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A numerical study based on the nonlinear Schrodinger equation, as applied to 
nonlinear resonant standing waves excited directly by a wavemaker in a rectangular 
tank, is presented. The stationary solutions of the problem serve as a starting point 
of the investigation. Bifurcations from a single steady state to  multiple stationary 
solutions are obtained for several values of damping coefficients along the tank and 
a t  the wavemaker. The stability of the latter solutions is tested. Limit-cycle or fixed- 
point solutions are obtained. The results of the numerical study are discussed in 
connection with experimental data. The necessity of incorporation of dissipation at  
the wavemaker in the theoretical model in order to obtain qualitative agreement 
with experiment is demonstrated. 

1. Introduction 
I n  recent years there has been considerable interest in standing waves that are 

excited in the vicinity of the cutoff frequency in a closed container or in a wave tank, 
both in the case of direct excitation and that of parametric subharmonic resonance. 
Even in a relatively simple case of direct excitation of waves in a circular cylinder, 
a rich variety of nonlinear phenomena, such as various types of bifurcations, period 
doublings and chaotic states were observed (Funakoshi & Inoue 1988). When such 
waves are excited parametrically, the problem becomes rather complicated, Ciliberto 
& Gollub (1985), Umeki & Kambe (1989), although it  can still be described by a 
system of ordinary nonlinear differential equations. 

I n  the present work we consider resonant standing gravity waves which are 
excited in a semi-infinite rectangular tank of width b by a wavemaker located a t  
x = 0, having an instantaneous shape with a characteristic length of L = 2b/n, n 
being the mode number. Such waves of the first mode were studied by Barnard, 
Mahony & Pritchard (1977, hereinafter referred to as BMP). Only steady wave 
regimes were observed by BMP. In their theoretical analysis they derived the 
governing ordinary nonlinear differential equation which describes the values of the 
stationary wave amplitudes along the tank. BMP were the first to realize that 
incorporation of damping is necessary in order to obtain qualitative agreement 
between their experimental results and the theoretical predictions. BMP also 
reported on two different wave patterns that were observed in the tank. 

Kit, Shemer & Miloh (1987, hereinafter referred to as KSM), studied resonant 
waves of the second mode for a wide range of wavemaker amplitudes and frequencies. 
In contrast to BMP, they observed experimentally both steady and slowly modulated 
regimes. A range of values of the detuning coefficient h was found where either steady 
or modulated (on a long timescale) wave regimes could be observed. depending on 
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initial conditions. Steady regimes were observed when the forcing frequency was 
gradually increased (at constant wavemaker amplitude), until a sharp transition to 
a modulated regime occurred. When the forcing frequency was slowly reduced after 
this transition, the unsteady pattern could be retained for relatively low frequencies, 
and a reverse transition to the steady regime occurred at  values of h notably lower 
than those for which the transition from steady to modulated regime was observed. 
Similar hysteresis was obtained by slow variation of the forcing amplitude at  a 
constant frequency. Numerical solution of the model nonlinear Schrodinger (NLS) 
equation derived by KSM gives the various wave patterns observed in the 
experiment. Qualitative agreement between the experimental results and the 
numerical predictions of the long- time evolution of the wave amplitude distribution 
along the tank was obtained by KSM, provided that in addition to the damping term 
in the governing equation, which accounts for dissipation along the tank, another 
damping term is introduced in the boundary condition at the wavemaker. 

The importance of the dissipation a t  the wavemaker was substantiated in a later 
work by Shemer & Kit (1988), where both complex dissipation terms, along the tank 
and at the wavemaker, were obtained theoretically for the case of purely viscous 
dissipation mechanism in the Stokes layers a t  solid walls. In that  investigation it was 
experimentally demonstrated that the wavemaker dissipation affects the long-time 
evolution pattern of the nonlinear standing resonant waves in a significant way. 
Specifically, i t  was shown that the variation of the dissipation rate at the wavemaker 
by adding roughness elements to the wavemaker surface caused drastic changes in 
the wave regime in the tank. It was also shown by Shemer & Kit that the 
incorporation of the wavemaker dissipation in the theoretical model led to good 
quantitative agreement between the experimental and the numerical results. It 
should be stressed, however, that for such agreement to be attained, the values of the 
dissipation coefficients had to be substantially higher than those predicted by a 
theory based on a purely viscous dissipation mechanism. 

The experiments of KSM were performed with the wavemaker equipped with the 
roughness elements. For a smooth wavemaker, practically no hysteresis in transition 
between the steady and the modulated regimes was observed. In  this case the 
hysteresis was shifted down to frequencies where only a steady wavefield existed in 
the tank. Detailed measurements of two different steady wave distributions in the 
tank were reported by Shemer, Chemesse & Kit (1989). 

Miles (1988) rederived the governing NLS equation for directly excited standing 
waves in a rectangular tank, using a variational formulation. The resulting equation 
is in agreement with KSM. He has found that under certain conditions the governing 
equation possesses multiple stationary solutions. This was related by Miles to  the two 
different wave regimes observed in the experiments by BMP. 

In the present work the Miles analysis is extended in several directions. First, the 
dissipation at the wavemaker is incorporated in the Miles equations in $ 2  and the 
effects of the wavemaker dissipation are studied in $3. The whole problem is revisited 
in $4 from an experimental point of view, and bifurcation diagrams are presented 
which show the domains of unique and multiple solutions in terms of the single 
variable parameter of the problem, the detuning coefficient A. The results are 
presented for a number of dissipation coefficients along the tank and at  the 
wavemaker. Possible stationary distributions of the wave amplitude along the tank 
are plotted in $5. The next step is made in $6,  where the time-dependent KLS 
equation is employed to study the stability and the long-time evolution of the 
previously obtained stationary solutions. These numerical experiments yield only 
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fixed-point or limit-cycle type solutions. A comparison between the numerical 
solutions and experimental data is performed in $7. Section 8 offers a brief summary 
and conclusions. 

2. Governing equations 
Following KSM and Shemer & Kit (1988), we consider a semi-infinite deep 

rectangular tank with side walls at y = 0 and y = b and a wavemaker at z = 0. All 
variables are rendered dimensionless using b as a lengthscale and ( b / g ) :  as a timescale. 
For standing waves of the nth mode, the wave number k ,  and the cutoff frequency 
w ,  are given by 

The slow variable along the tank X and the slow time variable T are defined by 

(1) E ,  = nz, w ,  = A$. 

X = ~ ( T H T ) ~  &x, T = f(nn)3 mn t ,  (2) 

where the small parameter E represents the amplitude of forcing and is proportional 
to  the dimensionless stroke of the wavemaker at  the mean surface level, s. The 
corresponding coefficient of proportionality depends on the wavemaker shape 
function, see Shemer & Kit (1988). The ratio of the deviation of the forcing 
frequency w from w ,  to the forcing amplitude e is represented by the detuning 
coefficient h : 

The velocity potential q5 is related to the complex, normalized amplitude C by 

# = E ~ C O S  (k, y) exp ( k ,  z )  [C(X,  T )  exp ( - i d )  + c.c.], (4) 

where C.C. denotes complex conjugate. I n  the presence of dissipation, the slow space 
and time variation of the complex amplitude of the velocity potential C ( X , T )  is 
governed by the NLS equation 

ac a2c 
i-+++(h+dl)C+21C12C = 0, 
aT i3X 

with the boundary condition at the wavemaker having the following form: 

-=- i -d2C a t X = 0 .  
ac 
ax 

The amplitude C vanishes as X --f 00. The complex dissipation coefficients along the 
tank, d l ,  and a t  the wavemaker, 6,, can be presented in the case of purely viscous 
dissipation as 

Comparison with the available experimental data indicate that estimates of a,, and 
to an even greater extent, of a2, based on viscous dissipation only are substantially 
below their actual values, which may vary significantly among various experimental 
facilities and under different experimental conditions (Kit & Shemer 1989 ; Shemer 
et al. 1989). The arguments of both complex dissipation coefficients will be assumed 
to be equal to $K, as in (7). This is in reasonable agreement with the experiments. 

Miles (1988) has considered stationary solutions of (5)  subject to  the boundary 
condition a t  the wavemaker (6) corresponding to vanishing dissipation at  the 

dl = ul(I+i) ,  d, = a2(I+i).  (7) 
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wavemaker, i,e. a2 = 0. A modification of Miles’ approach is now presented which 
takes into account the complex dissipation coefficient along the tank, as well as the 
dissipation at  the wavemaker. I n  Miles’ presentation the governing equation has the 
following form : 

d2A 
-+(e’4+IAl2)A = 0. 
d e  

The relation between the Miles’ variables A and fl  and our variables C and X is given 

c = A(’A )i 

(8) 

(9a, b) 
fl  by x = -- 
A! ’ 2 1 ,  

with A, = [ ( A  +a# + u;$, 
A, being the absolute value of the linear term coefficient in (5 ) .  The boundary 
condition at the wavemaker (6) rewritten in terms of Miles’ variables is 

dA i d 2  l + i  - - -__- a,-A a t  fl  = 0. 
dC - A, hi 

(12) 
-- dlogA - L + X  

d6 
The transformation 

is introduced, where L and K are regarded as functions of 2, 

The complex equation (8) is replaced by a system of two real equations: 

2 L Z ~ + L 2 - K 2 + c o s 2 ~ q 5 - s i n 2 a Q + 2 A ~  dL = 0, L-  d(ZK) = -$sin$. (14a, b) 
dZ 

Additional details can be found in Miles (1988). Equating the absolute values and the 
arguments of the boundary condition a t  the wavemaker ( 1 1 )  in the presence of 
wavemaker dissipation yields, respectively, 

and 

where 

and 2, corresponds to the position of the wavemaker (6 = 0). Equations (14) are 
integrated starting from infinity, i.e. from the singular point Z = 0, so that the 
dependence M = M ( Z )  is obtained. Steady solutions correspond to the points 2 = 2, 
where (15a) is satisfied. Equation (12) can now be integrated to yield 
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FIGURE 1. The dependence N(2). (a) A/al = - 10.0, a2 = 0, 9 = 173.7'; (6)  = -2.5, a2 = 0, 
4 = 146.3'; (c) A/a, = - 10.0, a,//\$ = 0.1, 4 = 173.7'; ( d )  A/a, = - 10.0, a,/hx = 0.5, 4 = 173.7'. 

Using (9), all possible stationary distributions of complex amplitude C ( X )  can now 
be obtained, and their stability can be checked by substituting them into (5 )  as initial 
conditions. 

3. Effects of dissipation at the wavemaker 
We consider first the case of vanishing dissipation a t  the wavemaker, a2 = 0. The 

function M = M ( 2 )  then depends on a single parameter q5, see (S), (14) and (15). There 
is a straightforward transformation from q5 and the parameter in the wavemaker 
boundary condition (15), A,, to the physical variables a, and A, which follows from 

a,  = A,tanq5, h = h,(cos$-sinq5). (18) 
(10) : 

Thus the argument q5 is a function of the ratio of the physical parameters, h/a,, only. 
The dependence of M on 2 is shown in figure 1 (a) for h/a,  = - 10.0, q5 = 173.7". 

Single stationary solutions are obtained only when M < 0.156. The domain of M 
where only one stationary solution exists expands with decreasing $. At smaller 
angles q5, there may be a limited range ofM where multiple solutions are possible. In 
the case of q5 = 146.3', A/a, = -2.5, presented in figure 1 ( b ) ,  multiple stationary 
solutions exist for 0.702 < M < 0.745. Stationary wave amplitude distributions 
become unique for arbitrary M for q5 < 140'. Note that, as observed by Miles (1988), 
the inverse dependence 2 = Z ( M )  gives a possibility of multiple values of M for a 
given value of Z for arguments $ exceeding the critical value of $* = 127'. The 
integration of (14) for q5 > $* thus demands a parametrization as suggested by Miles 
& Becker (1988). 
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The incorporation of the wavemaker dissipation renders the situation more 
complicated, since the function M ( 2 )  now depends on an additional parameter a,/A\ 
also, see (15b). Even a relatively weak dissipation a t  the wavemaker, a,/Ai = 0.1, 
affects the shape of the function M ( Z )  at  q5 = 173.7" in a notable way (cf. figure l c ) .  
The critical value of M is now 0.293, nearly twice as large as in figure 1 (a)  in the 
absence of the wavemaker dissipation. The curve M ( Z )  in figure 1 ( c )  intersects itself. 
The functions L and K are multivalued functions of 2 (cf. Miles & Becker 1988), and 
therefore accept different values a t  different passages of the intersection point. The 
distributions of the complex amplitude along the tank obtained from (17)  for the 
values of M and Z corresponding to alternative approach routes to the intersection 
points are therefore not identical. 

- 10.0 as in figure 1 ( c ) ,  but with a higher dissipation rate a t  
the wavemaker, a,/(h,)~ = 0.5, figure 1 ( d ) ,  a substantially higher critical values of 
M = 1.033 below which unique stationary solutions exist, is obtained. Qualitatively, 
however, the shape of the curve M = M ( Z )  remains unchanged. If the wavemaker 
dissipation coefficient a,/(h,)i is further increased, the critical value ofM below which 
only a single stationary solution can exist in the tank grows as well. In  general, as 
i t  could be expected, incorporation of the dissipation at the wavemaker extends the 
range of parameters where no multiple stationary solutions are possible. 

At q5 = 173.7", h / a ,  

4. Relation to the experimentally meaningful parameters 
4.1. General approach 

The results of the previous section were presented as a function of three parameters : 
the argument of the linear coefficient in the NLS equation, 4, the absolute value of 
this coefficient, A, (which is related by (15a) a t  the wavemaker to the parameter M ) ,  
and the dissipation coefficient a t  the wavemaker, a2, normalized by hi. Such a 
presentation stems naturally from the form of the equations solved, but makes it 
difficult to relate the conclusions directly to  the experimental observations. For a 
given mode number n? two parameters can usually be varied a t  will in the 
experiments : the forcing amplitude, which is represented by E ,  and the wavemaker 
frequency w.  In  most experimental runs of BMP, KSM and Shemer & Kit (1988), the 
wavemaker stroke was kept constant, while the frequency was altered. In the case 
of purely viscous dissipation, both dissipation coefficients a,  and a2 depend on the 
forcing amplitude E (Shemer & Kit 1988) and thus remain constant for a given 6 .  

There is experimental evidence, however, that in reality, for a given experimental 
facility, the dissipation coe%cient a2 is only weakly dependent on E (Shemer et al. 
1989). For a given experimental run, the detuning coefficient h is the only relevant 
parameter. 

The variation of h in the experiment corresponds to the change both in the 
absolute value h1 and in the argument q5 of the complex linear coefficient in (6) and 
(9). In order to facilitate the comparison of the theoretical predictions regarding the 
possible stationary wave distributions in the channel, with the experimental results, 
the theoretical results have to be presented in terms of the physically meaningful 
parameters, i.e. the detuning parameter h and the dissipation coefficients along the 
tank, a,, and a t  the wavemaker, a2. 

4.2. Calculational procedure 
The range of the detuning parameters A ,  which we have investigated is - 10 -= h < 0. 
This range contains the values of h which were employed in the experiments and 
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where the transitions between various wave regimes were observed. Calculations 
were performed for three dissipation coefficients along the tank, a, = 0.2, a, = 0.5 
and a, = 1.0, roughly corresponding to the estimates of the damping coefficient in 
various experimental conditions. For each value of the dissipation coefficient along 
the tank, a,, chosen, the range of angles < 9 < $,,, was selected according to 
(18), so that the variation of h in the desired limits could be obtained. Equations (14) 
were then solved for 250 equally spaced values of q5 within this range. For each case, 
the dependenceM(2) was calculated according to  (16) and (13) for three values of the 
dissipation coefficient a t  the wavemaker a,: 0, 0.5 and 1.0. This selection was based 
on the experimental estimates of a, (cf. Shemer et al. 1989). All possible solutions of 
( 1 5 4  Zo,i were determined, where i denotes the running number of the root of (15a),  
and the corresponding complex amplitudes a t  the wavemaker A,(O) were calculated 
from (13) and ( 1 5 b ) .  These amplitudes for each value of A, were then translated to 
the complex amplitudes of the velocity potential C, using (9a) .  The resulting files, for 
each a, and a, separately, contained complex amplitudes a t  the wavemaker in all 
possible stationary states as a function of the detuning parameter A and the solution 
number i and were recorded on a disk. The obtained results could thus be presented 
in compliance with the way in which the dependence of the experimentally obtained 
amplitudes on the frequency or on the amplitude is usually reported, see e.g. BMP 
and KSM. 

4.3. Bifurcation diagrams 
The results in the absence of dissipation at  the wavemaker (a, = 0) are presented in 
figure 2. Both the amplitudes and the phase angles a t  the wavemaker are shown. For 
values of the detuning parameter h that  are sufficiently high, there exists a single 
stationary solution. When h is decreased, a bifurcation to three possible solutions 
occurs. The critical value of h a t  which this bifurcation is obtained decreases with 
increasing a,. In  the case of relatively weak damping along the tank (figure Ba), 
subsequent bifurcations to 5 ,  7 and 9 stationary solutions occur when h is further 
decreased. There is a certain resemblance among the bifurcation diagrams a t  low h 
for all values of a,. Two types of solutions are obtained: a unique distribution that 
corresponds to a low amplitude at the wavemaker which decreases as the value of h 
is lowered, and multiple regimes which have high amplitude and grow with 
decreasing detuning coefficient. Note that the amplitudes are very similar for all a, 
that were checked. The phase distributions presented in figure 2 indicate that all 
regimes which have close amplitudes are in fact quite different having phase angle 
which deviate significantly. 

The incorporation of dissipation a t  the wavemaker alters the picture both 
quantitatively and qualitatively. At a2 = 0.5 and relatively weak dissipation along 
the tank, a, = 0.2, figure 3(a) ,  there are two distinct domains of h where multiple 
stationary solutions exist. Beyond these domains, only a single stationary wave 
regime may exist in the tank. The dissipation at the wavemaker does not affect, 
however, the single possible low-amplitude regime, discussed above in the case of 
vanishing dissipation at  the wavemaker ; both the amplitudes and the phases of this 
regime in figure 2 ( a )  are quite similar to the corresponding quantities in figure 3 ( a ) ,  

Figure 3(b), which represents the case with a2 = 0.5 and a, = 0.5, demonstrates 
that  the incorporation of the wavemaker dissipation may eliminate totally the 
existence of multiple stationary solutions. If the dissipation at the wavemaker is 
further decreased, a single steady solution is obtained for all A, even when a, = 0.2. 
Figure 3 (c )  therefore shows a different bifurcation diagram obtained when the 
damping a t  the wavemaker is strong (a,  = l . O ) ,  but the dissipation along the tank is 
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relatively weak, a, = 0.1. Kow there is only a single relatively narrow domain when 
the three wave regimes are obtained. 

5. Amplitude distributions along the tank 
The nature of possible multiple stationary solutions is best illustrated when on1 

plots the corresponding amplitude distribution along the tank. Figure 4 shows thc 
profiles of the absolute values of the amplitude C ( X )  a t  a, = 0.2 and a2 = 0 for : 
values of A,  which corresponds to different domains in the corresponding bifurcatioi 
diagram (figure 2a) .  The single distribution obtained for h = -0.5, as well as mos 
of the possible distributions at A = -2  and at h = -3, exhibit a strongly non 
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monotonous shape of ICl(X). Two decaying regimes labelled 1 and 2 in figure 4(c)  are 
the only exceptions. The presentation in figure 4 also makes apparent the qualitative 
difference between the various high amplitude solutions which in figure 2(a )  look 
close owing to neighbouring absolute values of the amplitude a t  the wavemaker. 

When the dissipation along the tank is increased to a, = 0.5 in the absence of 
dissipation a t  the wavemaker, there are two possibilities : a unique solution, or three 
solutions (figure 2b) .  The amplitude distributions along the tank which exemplify 
both cases are presented in figure 5(a ,  b ) .  The single solution at  h = - 1.0 has a 
maximum at  X + 0, while two of three possible stationary regimes a t  h = -3  decay 
monotonously with X. There is no qualitative difference between the bifurcation 
diagram given in figure 2 ( b )  and that of figure 2 ( c )  for a, = 1.0, u2 = 0. Stronger 

I 

(c) 1.0 - 

IC(0)l - a,;): 

0.5 - 29: 
;x 

0 I 0 

I 

n -  /k: 
- 



152 L.  Shemer 

0 5 10 
X 

0 5 10 
X 

FIGITRE 4. Stationary amplitude distributions along the tank, a,  = 0.2, u2 = 0. A, locations of the 
wavemaker which satisfy (15a)  ; the numbers denote the corresponding branch in figure Z(a) .  
( a )  A = -0.5; ( b )  h = -2.0; (c) h = -3.0. 

dissipation along the tank, however, modifies the stationary amplitude distributions 
along the tank, so that only decaying regimes remain, see figure 5 ( c ,  d ) .  

The role of dissipation at the wavemaker is now examined. The distributions along 
the tank which correspond to various domains in the bifurcation diagram (figure 3a)  
are presented in figure 6. The unique stationary regime obtained a t  relatively high 
value of h = -0.5 (figure 6 a ) ,  is quite similar to that of figure 5 (a).  All three possible 
solutions obtained a t  A = - 1.0 (figure 6 h ) ,  have their maxima detached from the 
wavemaker. The single distribution at  h = -2.0, presented in figure 6 ( c ) ,  decays 
monotonously, as are all three stationary regimes in figure 6 ( d )  at  h = -3 .  At lower 
values of h a single monotonously decaying regime, qualitatively similar to the one 
shown in figure 6(c) ,  is obtained. When the dissipation along the tank is decreased 
to a, = 0.5, with u2 = 0.5, as in figure 3(6) ,  the wave amplitude decays with the 
distance from the wavemaker for all values of the detuning coefficient A. The 
distributions obtained at a2 = 1.0 and a,  = 0.1, corresponding to figure 3 ( c ) ,  do not 
differ qualitatively from the profiles plotted in figure 6, and for that reason they are 
not presented here. 

6. Stability of the stationary distributions and their long-time evolution 
6.1. Background 

The results presented in the previous sections show that single stationary wave 
amplitude profiles exist for all h which exceed a certain critical value. This critical 



Directly generated resonant standing waves in a rectangular tank 153 
1.0 1 . I . I . I . I  

(4 1 

I CI 

X 
0 2 4 

X 

3 

0 2 4 0 2 4 
X x 

FIGURE 5. Stationary amplitude distributions along the tank, at stronger dissipation along the 
tank and a2 = 0. Symbols as in figure 4. (a )  a, = 0.5, h = - 1.0; ( b )  a,  = 0.5, A = - 3 ;  (c) a ,  = 1.0, 
A = -2 .0;  ( d )  a,  = 1.0, h = -3 .  

value varies with a, and a2 (see figures 2 and 3). At values of h below the critical one, 
the bifurcation diagrams indicate a possibility of the existence of multiple stationary 
amplitude distributions along the tank. Miles (1988) points out that the question of 
stability of the stationary solutions is especially important when more than one such 
solution becomes possible. To the best of our knowledge, the maximum number of 
different wave patterns observed in various experiments a t  identical forcing 
conditions is two. BMP and Shemer et al. (1989) report on a possibility of two 
different stationary distributions, while KSM have observed in the hysteresis region 
either stationary or modulated (on a slow timescale) wave patterns, depending on the 
previous history of the wave field in the tank. Moreover, in all experiments 
performed in Tel-Aviv (KSM; Shemer & Kit 1988; Shemer et al. 1989), as well as in 
the numerical experiments of KSM and Shemer & Kit (1988) at h exceeding the 
critical value, where a single stationary regime can exist according to figures 2 and 
3, only time-modulated wave patterns were obtained. Thus, there is no direct 
relation between the number of stationary solutions for a given set of parameters, 
and the posibility of realization of these solutions, which depends on their stability. 

The stability of each stationary complex amplitude distribution obtained by 
solving the system of equations (14)-( 16) was checked by substituing such 
distribution as an initial condition for ( 5 )  with the boundary condition (6). The 
transformation of variables was performed according to  (9). The NLS equation was 
integrated numerically using the semi-implicit Crank-Nicolson scheme. The details 
of the numerical procedure were given in KSM. It should be stressed here that in this 
way the accuracy of both the stationary solution and the NLS solver could be 
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FIGURE 6. Stationary amplitude distributions along the tank in the presence of the wavemaker 
dissipation a2 = 0.5, a ,  = 0.2. Symbols as in figure 4. (a )  h = -0 .5;  ( b )  h = -1.0: (c) h = -2.0; 
( d )  h = -3.0. 

effectively tested. In  all cases when the stationary solutions proved to bc steady, the 
initial profile stayed essentially unchanged in time in the process of integration of the 
NLS equation, while the unsteady regimes remained nearly permanent only during 
the first stage of evolution, as long as the initial disturbance was small. It can thus 
be safely concluded that both the stationary and the time-dependent numerical 
procedures are sufficiently accurate. The time-dependent solutions obtained when 
the stationary distributions appear to  be unstable can be presented in a visually clear 
manner by plotting the two-dimensional projections of the infinite-dimensional 
phase space, see e.g. Funakoshi & Inoue (1988). Fixed-point and limit-cycle types of 
solution can be clearly seen in this presentation. 

6.2. Steady regimes 
The analysis of the stability of stationary solutions shows that for all pairs of the 
dissipation coefficients a, and u2 which correspond to single stationary distributions 
for the whole range of A,  e.g. a, = a, = 0.5 (see figure 3 b ) ,  these stationarys profiles 
prove to be steady. Moreover, numerical experiments have shown that when the 
calculations of the time-dependent NLS equation are started with some arbitrary 
initial distribution, zero initial condition being a convenient example, the wave field 
eventually evolves to  the only possible stationary distribution. Although this fact 
cannot serve as a conclusive proof, there are good indications that the stationary 
solution obtained serves as a fixed-point for an arbitrary initial condition. 

Steady wave patterns alone were also obtained in the present work when a, = 1.0, 
a2 = 0. The bifurcation diagram given in figure 2 (c) shows that for h < - 2.65 there 
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are three stationary distributions. The solution of the NLS equation for A within this 
range shows that two of three possible regimes are steady : the one with the minimum 
amplitude a t  the wavemaker, and the other with the maximum amplitude, labelled 
in figure 2 ( c )  as 1 and 3, respectively. The intermediate regime 2 proves to be 
unsteady and is attracted to the low-amplitude distribution. The numerical 
experiments demonstrate a way to obtain alternative wave amplitude distributions 
in the tank. When the stationary solution at h exceeding the critical value of -2.65 
is substituted as an initial condition to the subsequent runs of the NLS equation with 
slowly decreasing values of A, the solution is attracted to the regime represented by 
the upper branch in the bifurcation diagram (figure 2c). For increments in h 
sufficiently small, it seems that it is possible to follow this branch to very low values 
of A. In  the present numerical experiments, h was decreased a t  each run by 0.25, and 
the upper branch solutions were obtained until h = - 17. At this point no subsequent 
calculations were made. If, however, the value of A was changed by larger steps, 
which in fact means that the disturbance of the stationary profile was made stronger, 
the solution of the time-dependent equation eventually converges to the lower 
branch of the bifurcation diagram. For example, when the calculations are performed 
a t  h = - 9.0 with the initial distribution corresponding to upper branch a t  h = - 8.0, 
the lower branch solution is obtained after the transients disappear. Note that when 
the calculations are started from zero at h < -2.65, the stationary regime with the 
low amplitude at the wavemaker is eventually obtained. For A > -2.65, any 
arbitrary initial condition evolves to  the single possible stationary distribution along 
the tank. 

6.3. Modulated regimes, no wavemaker dissipation 

The substitution of the single stationary complex amplitude distribution along the 
tank which exists for a, = 0.2, a2 = 0 and A > - 1.00 (cf. figure 4a)  reveals that this 
wave regime is unsteady. I n  order to provide information about the time and space 
evolution of the wave field, the results for h = -0.5 are presented at  two cross- 
sections, i.e. a t  X = 0 (at the wavemaker) and a t  X = 1. The second distance was 
chosen as large enough so that the behaviour of the wave field away from the 
wavemaker is demonstrated, yet close enough to the wavemaker, so that the wave 
amplitudes are not negligibly small. The projections of the trajectory in the phase 
space starting from the stationary solution on the two-dimensional planes at X = 0 
and X = 1 (figure 7a),  indicate that a limit cycle solution is obtained. Both limit- 
cycles are quite similar. No stationary regimes can thus exist in the tank for the 
conditions corresponding to those of figure 4a. When the integration of the NLS 
equation is started from' zero initial condition, the solution converges to the same 
limit-cycles as in figure 7 ( a ) .  This can serve as an indication that for the chosen 
values of governing parameters a,, a2 and A, the limit-cycle of figure 7 ( a )  represents 
the only solution that can be realized. 

The time history of ICI a t  two points along the tank which corresponds to figure 
7 (a )  is given in figure 8(a ) .  The initial distribution lasts for T x 5, until the 
instability causes a change of the whole wave field. An organized periodical 
modulated pattern eventually emerges. As in figure 7 ( a ) ,  the modulation pattern is 
very similar a t  both locations shown in figure 8(a ) .  The relatively well-organized 
character of the time evolution in figure 8 ( a )  can also be seen in the power spectra 
of iC[, presented in figure 9(a) .  At both locations there is a strong peak at the 
frequency of modulation,with the harmonic peak being weaker by more than a 
decade than the main peak. 
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Additional confirmation of the limit-cycle character and the lack of chaos in the 
long-time evolution of the wave field was obtained by calculating the two leading 
Liapunov exponents 0 1 ~ , ~ .  This was done by using the approach suggested by 
Goldhirsch, Sulem & Orszag (1987). The complex wave amplitude e ( X ,  T) = 
C ( X ,  T )  + Sj(X, T )  is considered ( j  = 1,2),  where C ( X ,  T )  is the undisturbed solution 
of the NLS equation ( 5 )  with the inhomogeneous boundary condition (6). The 
governing equation for the orthogonal disturbances Sj(X, T) is obtained by substi- 
tuting G ( X , T )  into ( 5 )  and (6) and linearizing the result with respect to  6,(X,T) .  
The resulting equation is 

(19) 
as. a2s. 

i A+++ [ A  + a,( 1 + i) + 41C(X, T)I2] 8, +2C2(X,  T) Sj. = 0. 

I n  thc absence of the wavemaker dissipation, the wavemaker boundary condition for 
Sj is 

A = O  a t X = O .  

Since (19) has coefficicnts which depend on T and X ,  it has to be solved simultaneously 
with ( 5 ) .  The Liapunov exponent 01, is defined as 

aT ax 

(20) 
as. 
ax 

6.2 
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where IIcT,(T)II denotes the L2 norm of 8,. The initial distributions of 8,(X) have to 
satisfy (20) and zero boundary condition a t  the far end of the integration domain 
X,,,. The second Liapunov exponent 01, is found by periodic orthogonalization of the 
disturbance 8, relative to the most rapidly growing disturbance 6,. Additional details 
regarding the calculation of the Liapunov exponents can be found in Goldhirsch 
ot nl. (1987). 

Since three PDEs (for C, 6, and 8,) have to be solved simultaneously for a long 
time, the calculation of 0 1 ~ .  , is computer-time consuming. In the present work several 
runs were made starting from the limit-cycle solution for C ( X ,  T) as shown in figures 
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FIGURE 9. Power spectra of the absolute values of complex amplitude, the values of the 
amplitudes correspond to those of figure 8. 

7 and 8, for a total time of T,,, = 300. The typical dependence of a on 1/T obtained 
for a, = 0.2, a2 = 0 and h = -0.5 is presented in figure 10. One can see that the 
asymptotic value of a1 a t  T+ co is negative and very close to zero, while a2 < 0. This 
supports the statement that the time modulation studied is non-chaotic. 

The test of stability of each one of the five possible stationary distributions at 
h = - 2 again leads to  a limit-cycle, which is the same for all five initial solutions and 
is presented in figure 7 ( 6 ) .  The same time-dependent solutions are obtained when the 
calculations are started from zero initial condition. There exists an obvious diff'erence 
in the shape and in the amplitude of the cycles a t  X = 0 and X = 1. Examination of 
the time history of the wave field, which is presented for h = -2  at  figure 8 ( b ) ,  
reveals that the appearance of IC(T)I a t  X = 1 is quite different from that of figure 
8(a) .  The power spectra of IC(T)I given in figure 9 ( b )  show that in contrast to  figure 
9 (a) ,  the spectra now contain numerous harmonics. The relative importance of 
higher harmonics in the spectrum appears to increase with the distance from the 
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wavemaker. The analysis based on the leading Liapunov exponents indicates that 
there is no chaos in this case as well. 

Qualitative changes occur a t  h = - 3  (cf. figure 4c). In  this case 7 stationary 
solutions exist. Two of them, labelled in figure 4(c) as 2 and 7 ,  when substituted into 
the NLS equation as initial distributions, are attracted to the limit-cycles presented 
in figure 7 (c). The rest of the possible solutions, however, take a different route and 
collapse to the first solution, which is a fixed-point. An identical steady solution is 
also obtained when integration is started from zero. An example of a fixed-point 
solution with the initial distribution corresponding to the branch labelled 3 in figure 
4 (c), is also presented in figure 7 (c). Two alternative regimes can therefore be actually 
observed in the tank at h = - 3 for the accepted values of the dissipation coefficients : 
one stationary, and the other quasi-periodic. The selection of the regime is 
determined by the initial conditions. The analysis of figure 7 ( c )  shows that these 
limit-cycles exhibit period doubling. The time history of the corresponding wave 
amplitudes is presented in figure S(c) .  The spectra of figure 9(c )  reveal that the 
addition of the low-frequency component affects the whole spectrum, and the 
number of peaks grows substantially. 

When the detuning coefficient is further decreased to h = - 5 ,  there are five 
possible stationary solutions, all of which are attracted to the single steady regime 
which corresponds to the lowest amplitude branch in the bifurcation diagram and 
decays monotonously along the tank. If, however, the calculations at h = - 5  are 
started with the initial condition corresponding to the limit-cycle distribution at  
h = - 3  a t  an arbitrary time, the limit-cycle solution is obtained. The modulated 
regime can be sustained by gradually reducing the detuning coeficient to h = - 10.0, 
where the stationary solution corresponding to the upper amplitude branch is 
obtained for all initial conditions. 

The branch labelled 1 on the bifurcation diagram (figure 2 a )  is thus the only 
branch which gives a steady solution for all A. This branch corresponds to stationary 
distributions with the shortest region of substantially non-zero wave amplitudes (cf. 
figure 4c). I n  most cases, the wave amplitude a t  the wavemaker for this branch is also 
minimal among all possible stationary solutions. The single exception is in the range 
-2.49 < h < -2.21, where two out of nine possible stationary distributions have 
a lower amplitude at the wavemaker than that of branch 1. The numerical runs 
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performed in this range confirm the stability of the regime corresponding to branch 
1,  while all other stationary distributions evolve to a limit-cycle. 

The present numerical experiments thus indicate that for a, = 0.2 and u2 = 0, a 
single limit-cycle type of solution is obtained for h > -2.21, one steady and one 
modulated in time wave regime can be obtained for - 10 < A < -2.21, while for 
extremely low values of h two stationary regimes, which correspond to the extreme 
branches on the amplitude diagram (figure 2a), appear to be stable. 

Somewhat similar results are obtained at a, = 0.5 (figure 2b). The main difference 
with the previous case is that now the single possible stationary distribution, which 
corresponds to the branch labelled 3 in figure 2(b), is stable for h = - 1 (the 
corresponding amplitude distribution along the tank is given in figure 5a) .  When this 
branch is followed to lower values of the detuning parameter A, the stationary 
distribution gradually becomes unstable and evolves to a limit-cycle. At  h = -3 ,  the 
rate of growth of instability of the stationary solution is extremely low, the 
amplitude of modulation is small, so that the time-dependent regime still does not 
deviate notably from the stationary solution. The range of variation of IC(T)I 
increases notably when A is reduced. The limit-cycle obtained at h = - 3 is presented 
in figure 7 ( d ) .  The pattern of variation of the absolute value of the wave amplitude 
with time is quite similar to that of figure 8(a ) .  The distribution labelled 1 in figure 
5(b) at h = -3, is stable, and the intermediate stationary solution converges to this 
stable solution. At lower values of h this limit-cycle seems to disappear and the upper 
branch solution a t  A = - 10 is stable. 

6.4. Modulated regimes, a2 $; 0 
The bifurcation diagram for a1 = 0.2 and a2 = 0.5 (figure 3a) ,  suggests that there are 
two domains of h where three stationary solutions are possible, whereas beyond these 
domains only unique stationary solutions exist. The stability check reveals that at  
high values of the detuning coefficient, h > -0.94, where the unique stationary 
solution exists, the situation is similar to that in the corresponding domain for 
a, = 0.5, a2 = 0. The stationary regimes are unstable, but the modulated solutions 
deviate only slightly from the stationary profiles. An example of the limit cycle 
obtained just beyond the first domain of triple solutions, h = -0.9, is plotked a t  
figure 7 ( e ) .  Note that the limit cycle of figure 7 ( e )  is plotted for a total duration of 
T = 150, in contrast to T < 75 in the rest of figure 7. This duration was necessary 
owing to the slow growth rate of instability of the stationary solution. The transient 
effects disappear in this case only after the duration of computations exceeds 
T = 100. Out of three possible distributions a t  - 1.28 < h < -0.94, shown in figure 
6 (b)  for h = - 1.0, only the regime labelled by 1 is steady, while any other initial 
condition checked, including the distributions labelled 2 and 3, eventually evolves to 
this only possible steady solution. 

The branch corresponding to the steady distribution in the first domain of the 
multivalued solutions is the only one which is continued in the bifurcation diagram 
(figure 3a) when A is reduced. Unique stationary profiles obtained a t  -2.84 < 
h < - 1.28 are steady. The solution labelled 3 in the second domain of triple solutions, 
-3.37 < h < -2.84, also corresponds to the same branch and is stable. As usual, the 
distribution labelled 1 in figure 6 ( d )  is stable, while the intermediate solution 2 is 
attracted to the first one. Hysteresis between two stationary solutions is thus 
obtained for -3.37 < h < -2.84. It is interesting to  note that the basin of attraction 
of the fixed point corresponding to the first solutions in this domain seems to be 
substantially larger than that of the third solution. Most arbitrary initial 
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distributions checked in the numerical experiments, including the initially un- 
disturbed water surface, evolve to the first profile. The third solution, however, 
appears to be stable to certain finite disturbances. For example, when the stationary 
profile labelled 3 in figure 6 (d ) is multiplied by a factor 1.1 ,  the disturbed distribution 
returns to the undisturbed profile. 

At a, = 0.1, a2 = 1.0 (figure 3 d ) ,  the stability pattern is similar to that of figure 
3(a) .  At the values of the detuning coefficient exceeding the domain of triple 
solutions, stationary profiles are unsteady and an arbitrary initial distribution 
evolves to a modulation of limit cycle type. The branch labelled by 1 in figure 3 ( c )  
corresponds to steady solutions for all h < -0.47. The other stationary distributions, 
as well as other initial conditions checked, are attracted to this steady distribution, 
which thus serves as the only fixed point. 

7. Comparison with the experimental data 
Detailed measurements of directly excited stationary resonant standing waves 

were reported by BMP and Shemer et al. (1989). Quantitative comparison of the 
theoretical results with these experiments requires, however, exact knowledge of 
both complex dissipation coefficients, 8, and 6,. As mentioned above, the 
theoretically obtained coefficients seem to be below their actual values (Shemer & 
Kit 1988). For that reason, for any given facility both dl and 6, have to be evaluated 
by comparing the model predictions with the measured data. BMP have disregarded 
the dissipation a t  the wavemaker, and estimated the absolute value of a, in their 
tank (translated to our variables) to be in the range 1.96 x lop4 < a, c < 3.63 x 
The correspondence between the parameters of BMP and ours can be established by 
the procedure used by Miles (1988). For the highest forcing amplitude employed in 
the BMP experiments (their 8 = 0.046, corresponding to our 6 = 2.47 x lop4), they 
observed, in a certain range of forcing frequencies, two different wave amplitudes in 
the tank (see their figure 5 ) .  As can be scen from figure 2, in the absence of 
wavemaker dissipation, multiple stationary wave regimes can only be obtained when 
a, > 0.5. The value of the dissipation coefficient along the tank, as estimated by BMP 
for that forcing amplitude, is 0.8 < a, < 1.47. The dissipation coefficient a1 = 1.0 
(figure 2c) is therefore within this range. 

The rescaled wave amplitudes measured by BMP in the vicinity of the wavemaker 
a t  c = 2.47 x are plotted in figure 2 ( c ) .  The quantitative agreement between the 
experimental data and the theoretical curves seems reasonable. The model also 
provides the correct value of h = -2.7 where the transition from the lower to the 
upper branch occurs. However, as discussed in 56.2, the upper branch in figure 2 (c) 
extends to very low values of A,  while in the experiments the reverse transition to the 
lower branch was observed for h < -3.4. 

are also 
presented in figure 2(c) for comparison. There is a remarkably good agreement 
between the results acquired in entirely different facilities. Here again, the model 
appears to represent correctly the absolute values of the wave amplitude, as well as 
the transitional value of the detuning coefficient (the ‘jump’ from low to high 
amplitudes occurs in these experiments a t  h = -2.66). The reverse transition to 
lower amplitudes takes place at h = - 3.25, giving an extent of the hysteresis domain 
similar to that observed by BMP. The inability of the theory to describe this reverse 
transition and the finite range of h where the hysteresis is obtained represents thus 

The experimental data obtained by Shemer et al. (1989) for 6 = 0.59 x 
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essential deficiency of the model which does not take into account the wavemaker 
dissipation. 

The wave phases reported by Shemer et al. (1989) are plotted in figure 2(c) as well. 
The agreement of their experimental data obtained in the low-amplitude regime with 
the theoretical curve labelled 1 is very good. However, the qualitative behaviour of 
argC(0) in the regime which corresponds to branch 3 appears to be quite different 
from the model prediction. As noticed already by BMP, the phase measurements 
provide a sensitive tool for assessing the correctness of the theoretical model. Hence, 
both the lack of the reverse transition and the phase behaviour of the model indicate 
that the reasonable agreement between the measured wave amplitudes and the 
theoretical curves may be fortuitous. 

There is every reason to believe that the theoretical value of al, which is obtained 
by taking into account only a purely viscous dissipation mechanism, yields the 
correct order of magnitude of the dissipation coefficient a t  smooth walls (Shemer & 
Kit 1988). When calculated for both BMP and Shemer et al. (1989) experimental 
conditions, the dissipation coefficient along the tank appears to be lower by an order 
of magnitude than a, = 1.0 accepted in figure 2 ( c ) .  On the other hand, direct 
experimental estimates of the dissipation coefhient a t  the wavemaker by Shemer 
et al. give a2 = O(1). This is in general agreement with the values chosen by Shemer & 
Kit (1988) based on comparison of the numerical solutions of the NLS equation with 
the experimental results. The amplitudes and phases measured by BMP and Shemer 
et al. were therefore also plotted in figure 3 (a )  (a,  = 0.2, a2 = 0.5), since these values 
of both dissipation coefficients seem to be more realistic. Both sets of experimental 
data comply well with the theoretical curves. The two major shortcomings of the 
model with vanishing dissipation at  the wavemaker have now been removed. The 
region of hysteresis predicted by the model is in agreement with the experimental 
results, and the variation of the wave phase with h obtained in the experiment 
follows the theoretical curves. 

Moreover, the incorporation of the wavemaker dissipation in the theoretical model 
describes the transition to the modulated regime, as well. The transition value of 
h-0.94 (cf. §6.4), is in a good agreement with the corresponding experimental values 
of h = -0.57 and h = - 1.24, reported by KSM and Shemer & Kit (1988) for two 
modifications of the wavemaker geometry. 

It should be stressed here that incorporation of the wavemaker dissipation in the 
model by simple modification of the boundary condition at X = 0 according to (6) 
and (7), does not take into account complicated mechanisms like vortex shedding at 
the wavemaker, owing to its discontinuities. It is reasonable to assume that such 
mechanisms contribute significantly to the wavemaker dissipation (Shemer & Kit 
1988). However, even this simplified model allows us to reproduce correctly all major 
features of the wave field. 

8. Discusion and concluding remarks 
I n  the present investigation the problem of the directly excited resonant standing 

waves in a tank is considered following the general approach suggested by Miles 
(1988). All possible stationary solutions for any given set of the experimental 
parameters are found first. The bifurcation diagrams given in figures 2 and 3 
delineate the boundaries between the qualitatively different domains and thus 
provide guidelines for the subsequent analysis of the unsteady wave fields. The 
results of $6 demonstrate that  the bifurcation of the steady solutions is closely 
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related to the transition between the wave regimes in the tank. The bifurcations 
diagrams show that numerous stationary solutions can be obtained, especially in the 
case with vanishing dissipation at the wavemaker. The results of the present 
numerical study, however, indicate that not more than two different wave regimes 
can exist in the tank. This i s  in agreement with the available experimental data. 

The close relation between the bifurcation diagrams and the transition between 
different wave regimes, as observed in experiments and obtained numerically, can be 
understood by examining the structure of these diagrams. The branch on the 
bifurcation diagram which corresponds to the most easily achieved steady 
distribution a t  low values of the detuning parameter A,  comes from - co and ends at  
some critical h (cf. figures 2, 3). An increase in h beyond this critical value therefore 
necessarily requires the existence of a sharp transition to an alternative wave regime. 
The alternative regime can be either steady, and thus correspond to an another 
branch in the diagram, or modulated on a slow timescale. If this alternative solution 
can be preserved when h is decreased below its critical value, hysteresis is 
obtained. 

KSM, and in particular Shemer & Kit (1988) stressed the importance of the 
incorporation of the dissipation a t  the wavemaker in order to obtain agreement 
between the numerical and the experimental results. By selecting a proper value of 
the complex dissipation coefficient a t  the wavemaker, Shemer & Kit managed to  
obtain good quantitative agreement between the theory and the experiment for the 
whole range of the experimental parameters. They have failed, however, to 
reproduce numerically the hysteresis which was observed in the experiments. The 
present results reveal the reason for that  failure. Relatively small variations in the 
values of the dissipation coefficients can significantly alter the general shape of the 
bifurcation diagrams. Hysteresis in finite ranges of the detuning coefficients h can 
only be expected when ‘loops’ appear in the bifurcation diagrams. The approach 
adopted in the present study provides an overall view of the problem, based on the 
bifurcation diagrams, and thus clearly shows the regions of possible hysteresis for 
any given set of parameters. The important conclusion of the present study is that 
these ‘loops’ can only exist when the wavemaker dissipation is taken into account. 
The close relation between finite domains of hysteresis, on one hand, and 
incorporation of dissipation in the wavemaker boundary condition, on the other 
hand, is thus established. 

Both steady and limit-cycle solutions were obtained. For certain values of the 
damping coefficients, there is a domain of h where these two regimes can be found a t  
identical forcing conditions. The possibility of obtaining numerically the hysteresis 
of the kind observed in the experiments is thus demonstrated. In  other experiments, 
two different steady distributions were obtained in the tank. This type of hysteresis 
is also obtained in the present investigation for sufficiently high damping rates along 
the tank. 

The question about the possibility of chaotic modulation in the directly generated 
resonant waves in a tank remains open. The experimental evidence on this aspect of 
the problem cannot be decisive owing to the extremely long duration of the 
experiment that seems to be necessary to make meaningful conclusions possible. The 
approach adopted in the present study can, in principle, provide a numerical answer 
for a given experimental situation, i.e. for given values of the damping coefficients. 
Such an endeavour demands a systematic scanning of all relevant parameters and 
thus requires a considerable effort and large computing times. 
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